Hamiltonicity and restricted block-intersection graphs of t-designs
نویسندگان
چکیده
Given a combinatorial designD with block set B, its traditional block-intersection graph GD is the graph having vertex set B such that two vertices b1 and b2 are adjacent if and only if b1 and b2 have non-empty intersection. In this paper we consider the S-block-intersection graph, in which two vertices b1 and b2 are adjacent if and only if |b1 ∩ b2| ∈ S. As our main result we prove that {1, 2, . . . , t − 1}-block-intersection graphs of t-designs with parameters (v, t+ 1, λ) are Hamiltonian whenever t ≥ 3 and v ≥ t+ 3, except possibly when (v, t) ∈ {(8, 5), (7, 4), (7, 3), (6, 3)}.
منابع مشابه
Existentially Closed BIBD Block-Intersection Graphs
A graph G with vertex set V is said to be n-existentially closed if, for every S ⊂ V with |S| = n and every T ⊆ S, there exists a vertex x ∈ V − S such that x is adjacent to each vertex of T but is adjacent to no vertex of S − T . Given a combinatorial design D with block set B, its block-intersection graph GD is the graph having vertex set B such that two vertices b1 and b2 are adjacent if and...
متن کاملMore on block intersection polynomials and new applications to graphs and block designs
The concept of intersection numbers of order r for t-designs is generalized to graphs and to block designs which are not necessarily t-designs. These intersection numbers satisfy certain integer linear equations involving binomial coefficients, and information on the nonnegative integer solutions to these equations can be obtained using the block intersection polynomials introduced by P.J. Came...
متن کاملThe Coupling Method for Inhomogeneous Random Intersection Graphs
We present new results concerning threshold functions for a wide family of random intersection graphs. To this end we improve and generalize the coupling method introduced for random intersection graphs so that it may be used for a wider range of parameters. Using the new approach we are able to tighten the best known results concerning random intersection graphs and establish threshold functio...
متن کاملOn the independence number and Hamiltonicity of uniform random intersection graphs
In the uniform random intersection graphs model, denoted by G n,m,λ , to each vertex v we assign exactly λ randomly chosen labels of some label set M of m labels and we connect every pair of vertices that has at least one label in common. In this model, we estimate the independence number α(G n,m,λ), for the wide, interesting range m = n α , α < 1 and λ = O(m 1/4). We also prove the hamiltonici...
متن کاملHamiltonicity is Hard in Thin or Polygonal Grid Graphs, but Easy in Thin Polygonal Grid Graphs
In 2007, Arkin et al. [3] initiated a systematic study of the complexity of the Hamiltonian cycle problem on square, triangular, or hexagonal grid graphs, restricted to polygonal, thin, superthin, degree-bounded, or solid grid graphs. They solved many combinations of these problems, proving them either polynomially solvable or NP-complete, but left three combinations open. In this paper, we pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009